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THE ACOUSTIC AND INSTABILITY WAVES OF JETS CONFINED
INSIDE AN ACOUSTICALLY LINED RECTANGULAR DUCT

FANG Q. HU

Department of Mathematics and Statistics

Old Dominion University

Norfolk, VA 23529

ABSTRACT

An analysis of linear wave modes associated with supersonic jets confined inside an

acoustically lined rectangular duct is presented. Mathematical formulations are given for
the vortex-sheet model and continuous mean flow model of the jet flow profiles. Detailed

dispersion relations of these waves in a two-dimensional confined jet as well as an un-

confined free jet are computed. Effects of the confining duct and the liners on the jet

instability and acoustic waves are studied numerically. It is found that the effect of the

liners is to attenuate waves that have supersonic phase velocities relative to the ambient
flow. Numerical results also show that the growth rates of the instability waves could

be reduced significantly by the use of liners. In addition, it is found that the upstream

propagating neutral waves of an unconfined jet could become attenuated when the jet is

confined.

This work was supported by the National Aeronautics and Space Administration under

NASA Contract NAS1-19480 while the author was in residence at the Institute for Computer

Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA 23665,

USA.
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1. INTRODUCTION

The exceedingly high level of jet noise presents a formidable barrier in developing

future generation High Speed Civil Transport planes (see, e.g., Seiner [1]). In a proposed

scheme of jet noise reduction, the exit jet of the engine is guided through a rectangular

duct before discharged into the air. In the designing concept, the purpose of the duct is

twofold. First, cold air could be sucked into the duct by the hot jet through the side inlets

and thus cool the jet stream and enhance the mixing. Second, the duct walls, installed with

sound absorbing liners, could absorb a substantial part of the jet noise. It is important

to understand and predict the generation, propagation and attenuation of jet noise inside

a duct with sound absorbing liners. Furthermore, recent studies of supersonic jet noise

generation mechanism have indicated that the growth of the instability waves of the jet is

responsible for the dominant part of the jet noise (see, e.g., Tam and Burton [2]). In view

of these studies, it is important to re-examine the jet instabilities with the confining lined

walls.

Duct acoustics and wave attenuation by wall liners have been investigated extensively

in the literature (see excellent reviews by Nayfeh, Kaiser and Telionis [3], Eversman [4]

and references cited therein). Pridmore-Brown [5] first formulated the acoustic wave prop-

agation problem in an attenuating duct with non-uniform mean flows. However, due to

computational limitations, a majority of the early works have only considered duct flows

with uniform mean velocity and temperature distributions. Later, with increased comput-

ing power, effects of the shear flow induced by the boundary layers at the duct walls were

included in the acoustic wave attenuation calculations. In most studies, the shear flow of

the boundary layer was approximated by a linear profile. It was found that the shear flow

had a refraction effect on the wave propagations. It was also shown that solutions with a

thin boundary layer converge to that of a uniform mean flow provided correct boundary

conditions were used in the latter (Eversman and Beckemeyer [6]). Most recently, Bies,

Hansen and Bridges [7] presented a study that takes into account the coupled effects of

the acoustic waves inside the duct and those in the liners. However, historically, little

attention has been paid to the instabilities of the shear flow inside the duct and its impact

on sound generation.

Recently, the instability and acoustic waves associated with a planar mixing layer

inside a rectangular duct have been studied by Tam and Hu [8]. Their main interest was

in the instability of a confined mixing layer at supersonic velocities. They found that

the instabilities of confined shear flows are quite different from that of their unconfined
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counterparts at high speeds. Systematic calculations of normal mode solutions showed

that new instability wave modes are induced by the coupled effect of the acoustic modes

of the confining duct and the instability of the shear layer. It was also shown that at

supersonic convective Mach numbers, acoustic waves that have supersonic phase velocities

relative to both sides of the shear layer could be unstable (or amplified). The acoustic-

mode instability of supersonic shear flows has also been found by Mack [9] for boundary

layers and wakes, and for supersonic jets by Tam and Hu [10]. These studies have shown

that at high supersonic speed, the acoustic-mode instability becomes the dominant flow

instability.

In this paper, we carry out a detailed analysis of the linear wave modes associated

with a given non-uniform mean flow inside a rectangular duct with finite wall impedance,

including the acoustic waves and instability waves. The numerical results presented here

are, however, limited to two-dimensional waves. Two models of the jet flow, a vortex-sheet

model and a continuous mean flow model, will be used. The mathematical formulation

of the problems is given in Section 2. In Section 3 we present the numerical results and

Section 4 contains the concluding remarks.

2. FORMULATIONS

2.1 MATHEMATICAL MODELS

We consider small amplitude waves associated with a given mean flow of a jet profile
inside a rectangular duct (Figure 1). Here the mean velocities and densities of the jet core

and the ambient stream will be denoted by uj, pj and ua, p., respectively. The jet exit

has a width of 2d. The height of the duct is denoted by 2h and the width by B. The

top and bottom walls of the duct are lined with acoustically treated materials with finite

acoustic impedance. Two side walls are taken to be solid walls. For simplicity, we assume
that the top and bottom walls are lined with the same materials. From linear stability

considerations, the locally parallel flow assumption will be used through out our study. To

facilitate the numerical investigation, two models will be used in the present paper. In the

first model, here referred to as the vortex-sheet model, the mean flow is piecewise uniform

for the velocity and temperature. This profile models the flow just down stream of the jet

nozzle near the nozzle exit. The advantage of the vortex-sheet model is that a closed form

dispersion equation can be found. This allows for an extensive numerical study about the
nature of all the wave modes. In the second model the mean flow is continuous. This

permits more realistic flows and models the flow further downstream of the jet nozzle exit.
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2.2 GOVERNING EQUATIONS AND BOUNDARY CONDITIONS
We express each flow variable as a mean quantity plus a small perturbation as follows:

u(. u Y, ,z t) (ti(y) U, (XYZ )
v(x, y, Z, t) 0 V'(X, ,Zt)
w(x,y,Z,,t) = + iW(Xy)z,t)A(=, Y5 z7 t) P( |P'(x, Y7,Z, t)
p(XY,,Z, ) p'(x, y, Z, t)

In the above, the x coordinate is in the downstream direction, y is in the vertical
direction and z is in the spanwise direction. u, v, w are the velocities in the x, y, z
directions, respectively, p is the pressure and p is the density. An overbar indicates the
mean quantity and prime indicates the perturbation. It is straightforward to find that the

linearized governing equations for inviscid, non-heat-conducting fluids are:

9P apt d,3 I Ou' Ov' Ow'
- + i-b- +- v + ,(--7 + y + 0) = o (2.1)

o ut Oxt d i 1x apt

, _' + , TV (2.2)at x dy a3x
19' y' 1apt
-t"+ = O 1 (2.3)

Otl Owl aptOw' 0wv' lOp'
+ 8Z (2.4)

Op' _)' _O0' Ov O w'

i-+ -L- + yp(•-= + -V•• + )=o (2.5)
at Ox ax ay O9Z

The temperature T is related to the pressure and density by the equation of state:

p = pRT (2.6)

For the system (2.1)-(2.5), we seek solutions of the form

'(x, y, z, 0 ,i(y) cos(27rmz/B)

y'(,, zt) Z0(y) cos(2rmz/B)
', (XY,t) 0P(y) cos(2rmz/B)

Substituting (2.7) into equations (2.1)-(2.5), together with the proper boundary con-
ditions, an eigenvalue problem is formed. In (2.7), the boundary conditions at the two
solid side walls, located at z = ±B/2, are satisfied automatically. At the acoustically
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treated top and bottom walls, located at y = ±h, the kinematic boundary condition is

the continuity of particle displacement at the lined walls. For harmonic waves, it yields

(Nayfeh et al [3])
= (ki -w). (2.8)

where Z is the wall impedance (Z = PwaU)
Vwall

In (2.7), m is a modal number indicating wave reflections in the z direction. When

m = 0, the waves are two-dimensional. The mathematical formulation of the eigenvalue

problems for the vortex-sheet model and the continuous mean flow profile model is given

below.

2.3 VORTEX-SHEET MODEL

For the vortex-sheet model the jet boundaries are represented by infinitely thin vortex

sheets. Thus the mean flow is piecewise uniform and a closed form dispersion equation

can be found. In addition, due to the symmetry of the mean flow, it is convenient to

consider symmetric (dO = 0) and antisymmetric (P3(0) = 0) wave modes separately. As" dy
a result only the flow in the upper half of the duct needs to be considered. By satisfying

the boundary conditions at the wall and the jet interface, the dispersion equation which

implicitly relates w and k is found as follows:

Symmetric Modes :

Aj tan(Ad) A8  pa(w - ku,) 2 cos[A"(h - d)] - iwA\Z sin[A8 (h -d)] = 0
pj(w - kui)2

- pa.(w - ku.) 2 pa(w - ku.) 2 sin[A.(h - d)] + iw,•aZ cos[,\a(h - d)]
(2.9a)

Antisymmetric Modes:

Aj cot(Ad) + A8 pa(w - ku,)2 cos[A,(h - d)] - iwAaZ sin[Ao(h - d)])O

pj(w - kut)2 pa(w - ku 8)2 p 8(w - ku.) 2 sin [A 8(h - d)] + iwA 8Z cos[A.(h - d)]

(2.9b)

where

Ad wh sku8d 2  ( 2m7e 2

~V Ca) B )

A. wI- kuj k2  ( 2mw"\ 2

c B)

and the speeds of sound are given by ca,3 - PaP
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Here it is interesting to note two special cases of the dispersion equations given above,

i.e., when the mean flow is uniform and when the duct walls are solid boundaries.

Uniform mean flow

For a uniform flow profile inside the duct, we have u. = u,, p. = pi and d = h. The

dispersion relation equations (2.9a) and (2.9b) then become

tan(Aid) - pj(w - kui ) 2  0
iwAiZ

for symmetric modes and
cot(Aid) + p,(w - ku,) 2  0

iwAjZ

for antisymmetric modes, respectively. The above two equations are the same as those

obtained in the literature for uniform mean flows (Nayfeh et al [3]).

Solid walls

For solid walls, Z -- oo. In this case, The dispersion relation equation (2.9a) and

(2.9b) reduces to
A, tan(Ad) + \. tan[A.(h - d)] 0

pj(W - kuj)2  p.(w - ku,)2

for symmetric modes (Tam and Hu [8]) and

Aj cot(A\d) _ \a tan[A.(h - d)]
p,(w - kui)2  P.(w - ku") 2  0

for antisymmetric modes, respectively.

2.4 CONTINUOUS MEAN FLOW MODEL

For continuous mean flow profiles, upon substituting (2.7) into (2.1) - (2.5), the lin-

earized governing equations can be reduced to a single equation for the pressure perturba-

tion as given below :

d"-' + 2k di 1 do) f + [ ki 2 -k2 = 0 (2.10)
wV -ki!dy p dy dy ~ k B)

where Z is the speed of sound.

The boundary conditions for P are, at y =h,

P+ w d- -0 (2.11)
- kiia)' dy
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and, at y = 0,
d13 = 0 (symmetric modes) (2.12a)

or

= 0 (antisymmetric modes) (2.12b)

Equation (2.10) and the boundary conditions (2.11), (2.12) form an eigenvalue prob-

lem. The problem will be solved numerically by integrating from the center line y = 0

to the upper boundary y = h and employing a shooting method using the results of the
vortex-sheet model as the starting solutions.

3. NUMERICAL RESULTS

For numerical results shown below, the Mach numbers of the jet and ambient flow
are Mj = 2.0 and M. = 0.2, respectively. The speeds of sound ratio c,/c, = 0.5. All

the results shown are with respect to two-dimensional symmetric wave modes. Results of

antisymmetric modes are similar and not shown here.

3.1 RESULTS OF THE VORTEX-SHEET MODEL

Our main interest is to determine the normal modes associated with a two-dimensional
supersonic jet confined inside a duct and study the effects of the confining lined walls on

these wave modes. For the purpose of making comparisons, the dispersion relations of an

unconfined jet will be discussed briefly.

3.1.1 Unconfined jets

The normal modes of a free circular jet has been studied extensively by Tam and Hu

[10]. Here some properties of a two-dimensional free jet will be examined briefly.
For a two-dimensional free jet, the dispersion equation relating the frequency w and

wavenumber k is given by:

iA. cos(Aid) Ai sin(Ad)

Pa(w - kU,) 2  pi(w - kui) 2

for the symmetric modes and

iAa sin(Aid) Aj cos(Ajd)
Pa(W - kU.) 2 p-(w - ku=)2  0 (3.1b)
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for the antisymmetric modes (Gill [11]). The dispersion relation of the symmetric modes

has been computed here and is shown in Figure 2, (k, and ki are the real and imaginary
parts of the wavenumber k). Our numerical studies of the dispersion equation (3.1a)

indicate that the present 'top hat' jet profile possesses instability waves as well as neutrally

stable acoustics waves. Furthermore, since the convective Mach number (here defined as
Mc = (ui - u.)/(ci + ca)) is greater than one in the present case, a family of supersonic
instability waves is also present in addition to the Kelvin-Helmholtz instability wave. This
family of unstable modes have supersonic phase velocities relative to both thc jet and the
ambient streams. The properties of these supersonic instability waves were more fully

discussed in Tam and Hu [10].

In addition to the unstable wave modes, namely the K-H wave and the supersonic
instability waves, there are also two families of neutrally stable waves associated with the
free jet. Here we should refer to these two families as the family C and family D acoustic
waves. For convenience of discussion, we should also divide the kr -U plane into five regions
by the sonic lines as indicated in the figure. Two aspects of the neutral acoustic waves

are worth pointing out. First, we note that the neutral waves are found only in region I,
above the sonic line w/kr = u,, + Ca or in region II, below the sonic line w/kr = U. - Ca.

That is, the phase velocity, Cph = wfk, of the neutral wave is always subsonic relative to
the ambient, i.e. JCph - U.1 < ca. For class C waves we get 0 < Cph < u,, + c,, and for
class D waves we get U, - C, < Cph < 0. In other words, for the free jet, the neutral waves
attached to the jet are necessarily decaying away from the jet. Second, it has been found
that part of the class D waves represent upstream waves with a phase velocity close to
U, - ca as indicated in Figure 2 (see also Tam and Hu [10]). This means that it is possible
to have upstream propagating neutral waves attached to the jet even though the jet mean
velocity is supersonic. This point will be re-examined more closely later.

3.1.2 Confined jets

We now turn to the effects of the duct walls and compute the normal modes associated
with a confined jet. We first deal with the case when the duct walls are solid boundaries.

The case when the duct walls are lined will be dealt with in Section 3.1.3. For solid walls,
we let Z --+ oo in (2.9). With the vortex sheet model, the frequency and wavenumber of
the wave modes are then the roots or zeroes of the dispersion equation (2.9a) or (2.9b). In
the present work, we are interested in the spatially attenuating or growing waves. Thus

w will be a real number. However, for systems that have spatial instabilities, it is not
sufficient to just set the frequency w to bc a real number and look for the zeroes of the
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dispersion equations in the complex k-plane. One must distinguish the downstream and

upstream propagating waves. Wtiout the proper distinction, a downstream-propagating

growing wave may be erron, a.sly considered as an upstream-propagating attenuating wave
and vice versa. For this reason, the criterion developed by Bc'iggs 112] and also used by

Tam and Hu [81 will be followed here. In this procedure, the frequency W is first given a
complex naaber whose real part is the frequency of interest and imaginary part is some

large number. Then the corresponding zeroes of the dispersion equation are found in the

complex k-plane. An w-contour deformation process is applied in which the real part of

the w is kept constant while the imaginary part of w is gradually reduced to zero. In this

process, the corresponding zeroes of the dispersion equation in the k-plane is traced as the
imaginary part of the w is being reduced. In Briggs' criterion, the zeroes originated from

the upper half k-plane then represent the downstream propagating waves and the zeroes

from the lower half k-plane represent the upstream propagating waves.

To illustrate the above process, the traces of the zeroes in the k-plane as the imaginary
part of w is being reduced are plotted in Figure 3 for the case of real(wd/ui) = 3. In this

way, the propagation direction of wave mode associated with each zero in the k-plane is

correctly identified. Those zeroes that move across the real k-axis will represent instability
waves. Those zeroes that remain in the upper or lower half k-plane then represent decaying

or attenuated waves. Moreover, zeroes that lie on the real k-axis in Figure 3 represent the

neutrally stable acoustic waves.

The above procedure has been applied systematically as the real part of L changes.
The dispersion relations so obtained are given in Figure 4. (Similar procedure has been

used in the free jet calculations given in the previous section). Here, for convenience of

discussion, wave modes have been classified into two families of unstable waves, the A and

B modes, and two families of neutrally stable acoustic waves, the C and D waves. However,

a detailed description of the characteristics of each family of the waves will not given here.

They are quite similar to the four families previously found in a planar mixing layer (Tam

and Hu [8]).

We now compare the dispersion relation of the confined jet given in Figure 4 with that

of an unconfined free jet shown in Figure 2. We first note that, due to the confinement,

the neutral waves can have phase speed supersonic to the ambient flow. The dispersion

relation curves for family C and family D neutral waves now extend across the sonic line

Co, = u. ± ca continuously.

Furthermore, upon closer inspection of Figure 4, the dispersion relation diagram shows
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that the family D waves now all have positive group velocities. To study the upstream

waves, the real and imaginary parts of k as a function of w are plotted in Figure 5 for

the first three zeroes that originate from the lower half k-plane in the contour deformation

process. It is seen that although these wave numbers have negative imaginary parts, they

are actually attenuating waves as they are upstream propagating waves. Careful numerical

computations show that for wd/ui < 4, no zero reaches the real k-axis from below. In

other words, low frequency upstream propagating waves of the free jet are attenuated due

to the presence of the confining walls.

Since the upstream propagating waves of the unconfined jet have phase velocities close

to u. - c. in the unconfined jets (see Figure 2), we can now calculate the group velocity,

-k/Ok, for neutral waves along the sonic line C.1 = u. - ca. By letting w/k = ua - ca,

the derivative Ow/Ok can be obtained analytically from the dispersion equations given by

(2.9a) and (2.9b). The expression for Ow/Ok is not given here for brevity. To have neutral

waves that travel upstream, it is necessary that Ow/Ok < 0. It is found that, for both the

symmetric and antisymmetric modes, this requires that
h -d caui(uji + Ca - J -cc

d 2(ca - U,)(U, + ca - Ua)2

or in non-dimensional parameters,

h-d MIMj+0(-Ma)'I]-Ih -> ] (3.2)
d 2(1 - Ma)[M, + (1 - M.).]2(2

ci

Figure 6 plots the boundary curves in the space M, versus d/h for different ambient

Mach numbers. Asymptotically, for hot jets and low Mach number in the ambient, the

upstream waves are attenuated when d/h > 2/3. For cold jets, this condition is d/h > 3/4.

3.1.3 Effects of wall liners

We now study the effects of the finite wall impedance of the liners on the acoustic and

the instability waves discussed in the previous section. A point-reacting wall impedance

model will be used in the present study [3]. In this model, the impedance of the wall is

given by

Z = paca [R + icot(•)] (3.4)

where pa, ca are the density and speed of sound of the ambient flaid, f is the thickness of

the liner cavity and R is the resistance (non-dimensional) of the wall facing the flow. In

all the results reported below, we have used t = 0.05h and varied R.
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Numerical calculations show that the liner effect varies for waves in different regions

in the dispersion diagram. For instance, for the acoustic waves in regions I and V, the
phase velocity is subsonic relative to the ambient flow but supersonic relative to the jet.

These waves are trapped inside the jet and their eigenfunctions decay away from the
jet. The effect of the liner is thus minimal. On the other hand, for acoustic waves in

regions IT, III and V, the phase velocity is supersonic relative to the ambient flow. Their
eigenfunctions show a larger pressure perturbation at the wall. Thus a larger influence of
the liner was found on the wave modes in these regions. This is clearly shown in Figure
7 where eigenfunctions of selected wave modes for solid and lined walls are plotted. Also

plotted are the eigenfunctions of A and B instability wave modes. For family A waves,
the eigenfunction has a peak at the jet boundary, y = 0.75h, and decays towards the wall.

Thus, the effects of the lined walls are not significant. For the B modes, however, the
eigenfunction decays slowly towards the wall. For this family of waves, a larger effect of

the lined walls was shown.

In Figure 8 we show the effects of the acoustic liner on the growth rates of the in-
stability waves. Plotted are the spatial growth rates of the first three family A waves for
wall resistance R = 1, 2, 5 respectively. Clearly the growth rates are reduced when finite

impedance walls are used. However, we also point out that the attenuation effects are not

significant for second and third modes, namely A2 and A3 modes.

In Figure 9 the effects of the liners on the acoustic modes are shown. Plotted are
the imaginary parts of the complex wave number as functions of 11R. It is seen that

with lined walls, the family D waves are attenuated but the family C waves are actually
destablized. Further investigation have indicated that this destablization is a direct result

of the merging of the C and unstable B waves when the impedance Z becomes a complex

number. Again it is clear from Figure 9 that the degree of influence of the liners on the
acoustic waves depends larb y on the phase velocity of the waves and thus the region in

the dispersion diagram. The least affected are the waves in regions I and V in which the

phase velocity of the wave is subsonic relative to the ambient flow.

3.2 RESULTS OF THE CONTINUOUS MEAN FLOW MODEL

For the continuous mean flow model, we have used a hyperbolic tangent for the mean
velocity profile, namely,

ii(y) = {i. + ii - (ii. - iii) tanh[2(IyI - d)l- ,]}
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and obtained the mean temperature profile from Crocco's relation (Hu [131). Here 6t,
represents the vorticity thickness of the shear layer. Our study with the finite thickness

mean velocity profile will be emphasized on the liner effects on the instability waves. In

particular, only the family A instability waves will be examined here since they have larger

growth rates than the family B modes.

In Figure 10, the growth rate (-kid) as a function of the vorticity thickness is given

for the most amplified A1 and A2 modes. Calculations were made for both the solid and

lined walls. In general, as the thickness of the jet shear layer increases, the growth rate of

the instability waves decreases. However it is clear from the results shown that the liner

becomes more effective in reducing the growth rates of the instability waves when finite

thickness effects are considered. In Figure 11 we show the variation of the eigenfunctions as

the thickness of the jet shear layer increases. It is seen that as the thickness increases, the

relative peak of the eigenfunction at the jet boundary is reduced. As a result the influence

of the wall boundary condition increases. Based on the results shown, for a realistic jet

flow with a finite vorticity thickness, say 6, > 0.05d, the acoustic liner can reduce the

growth rate of the instability waves quite significantly.

4. CONCLUDING REMARKS

A detailed analysis of the linear wave modes associated with a jet confined inside

acoustically lined duct walls has been carried out. The dispersion relations of the acous-

tic and instability waves have been computed and given for the two-dimensional modes.

In particular, the effects of the confining walls and the liners on the linear waves of the

jet have been studied. It is found that the effect of the liners is to attenuate waves that

have supersonic phase velocities relative to the ambient flow. The attenuation, however,

is less effective for the waves that have a subsonic phase velocity relative to the ambient

flow. In addition, it is found that due to the presence of the confining walls, the upstream

propagating waves associated with a free supersonic jet could become attenuated under

conditions given by (3.2). Furthermore, it is shown that, with a finite shear layer thick-

ness, the acoustic liners have a quite significant effect in reducing the growth rates of the

instability waves of the jet.

In recent studies on supersonic jet noise generation mechanism [2], the growth of

the instability waves of the jet plays a central role in the noise generation. The results

of the present study indicate that growth rates of the instability waves can be reduced

greatly by employing lined walls. It is then reasonable to expect that this reduction in the
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growth rate of the instability waves may not only result in a change in the hydrodynamics

(spreading rate, turbulent structures) but also result in a change in the noise generation

of the jet. Moreover, in recent studies of jet screech tone noises, it has been suggested

that the upstream propagating waves of the free jet is an essential part of the feed-back

mechanism (Tam and Norum [14]). The present study, however, shows that these upstream

propagating waves could become attenuated due to the confinement of the jet. It will be

interesting and challenging to further examine and explore the direct consequences of these

wave propagation properties on the noise generation. This, however, is beyond the scope

of this study.
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